Curvature Evolution of Nonconvex Lens-shaped Domains

نویسندگان

  • GIOVANNI BELLETTINI
  • MATTEO NOVAGA
چکیده

We study the curvature flow of planar nonconvex lens-shaped domains, considered as special symmetric networks with two triple junctions. We show that the evolving domain becomes convex in finite time; then it shrinks homothetically to a point, as proved in [22]. Our theorem is the analog of the result of Grayson [13] for curvature flow of closed planar embedded curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonconvex mean curvature flow as a formal singular limit of the nonlinear bidomain model

In this paper we study the nonconvex anisotropic mean curvature flow of a hypersurface. This corresponds to an anisotropic mean curvature flow where the anisotropy has a nonconvex Frank diagram. The geometric evolution law is therefore forward-backward parabolic in character, hence ill-posed in general. We study a particular regularization of this geometric evolution, obtained with a nonlinear ...

متن کامل

Inequalities for quermassintegrals on k-convex domains

In this paper, we study the Aleksandrov–Fenchel inequalities for quermassintegrals on a class of nonconvex domains. Our proof uses optimal transport maps as a tool to relate curvature quantities of different orders defined on the boundary of the domain. © 2013 Elsevier Inc. All rights reserved.

متن کامل

Evolution by Non-Convex Functionals

We establish a semi-group solution concept for morphological differential equations, such as the mean curvature flow equation. The proposed method consists in generating flows from generalized minimizers of nonconvex energy functionals. We use relaxation and convexification to define generalized minimizers. The main part of this work consists in verification of the solution concept by comparing...

متن کامل

Interface evolution in three-dimensions with curvature-dependent energy and surface diffusion: interface-controlled evolution, phase transitions, epitaxial growth of elastic films

When the interfacial energy is a nonconvex function of orientation, the anisotropic curvature flow equation becomes backward parabolic. To overcome the instability thus generated, a regularization of the equation that governs the evolution of the interface is needed. In this paper we develop a regularized theory of curvature flow in threedimensions that incorporates surface diffusion and bulk-s...

متن کامل

Fabrication of Saddle-Shaped Surfaces by Flame Forming Process

The flame forming process is widely used to manufacture ship hull plates. The saddle-shaped surfaces have different curvatures in perpendicular angles of planes and the manufacturers face an anti-clastic curvature. In this article, the manufacturing of saddle-shaped surfaces utilizing the flame forming process is investigated. The spiral irradiating scheme is used for forming. In order to study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009